Sparsity-Promoting Bayesian Dynamic Linear Models
نویسندگان
چکیده
Sparsity-promoting priors have become increasingly popular over recent years due to an increased number of regression and classification applications involving a large number of predictors. In time series applications where observations are collected over time, it is often unre-alistic to assume that the underlying sparsity pattern is fixed. We propose here an original class of flexible Bayesian linear models for dynamic sparsity modelling. The proposed class of models expands upon the existing Bayesian literature on sparse regression using generalized multivariate hyperbolic distributions. The properties of the models are explored through both analytic results and simulation studies. We demonstrate the model on a financial application where it is shown that it accurately represents the patterns seen in the analysis of stock and derivative data, and is able to detect major events by filtering an artificial portfolio of assets. Résumé : Les distributions a priori encourageant la parcimonie sont devenues de plus en plus populaires au cours desdernì eres années du fait du nombre d'applications croissantes en régression et classification im-pliquant un grand nombre de prédicteurs. Dans le cas o` u les observations sont recueillies au cours du temps, il est souvent irréaliste de considérer que la structure de parcimonie est fixée au cours du temps. Nous pro-posons ici une classe originale de modèles bayésiens linéaires flexibles pour la modélisation dynamique parci-monieuse. La classe de modèles proposée repose sur l'utilisation de distributions hyperboliques généralisées. Les propriétés de ces modèles sont explorées au travers de résultats analytiques et de simulations. Enfin, nous présentons une application de ce modèle en finance.
منابع مشابه
Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملExploiting sparsity and sharing in probabilistic sensor data models
Probabilistic sensor models defined as dynamic Bayesian networks can possess an inherent sparsity that is not reflected in the structure of the network. Classical inference algorithms like variable elimination and junction tree propagation cannot exploit this sparsity. Also, they do not exploit the opportunities for sharing calculations among different time slices of the model. We show that, us...
متن کاملBayesian Dynamic Mode Decomposition
Dynamic mode decomposition (DMD) is a datadriven method for calculating a modal representation of a nonlinear dynamical system, and it has been utilized in various fields of science and engineering. In this paper, we propose Bayesian DMD, which provides a principled way to transfer the advantages of the Bayesian formulation into DMD. To this end, we first develop a probabilistic model correspon...
متن کاملBayesian Inference for Sparse Generalized Linear Models
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties such as sparsity or non-negativity. The central role of posterior log-concavity in Bayesian GLMs is emphasized and related to stability issu...
متن کاملA Sparse Bayesian Estimation Framework for Conditioning Prior Geologic Models to Nonlinear Flow Measurements
We present a Bayesian framework for reconstruction of subsurface hydraulic properties from nonlinear dynamic flow data by imposing sparsity on the distribution of the solution coefficients in a compression transform domain. Sparse representation of the subsurface flow properties in a compression transform basis lends itself to a natural regularization approach, i.e. sparsity regularization, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995